&3

Elektrobit

SDK for EB corbos
AdaptiveCore

2.3.0
Getting started guide

Release

Getting started guide

Table of Contents
LAl MOTICE - 3
Typographic and style CONVENTIONS 4
Y o Yo 1 | 6
PrerEqUISIEES .o 7
Setting Up the ENVIFONMENT ... o 8
Configure the environment CONNECTION ... oo 8
Configuring the remote enViroNMEeNT 8
Configuring the APl key for the generators ... 8
Sample application for the DLT module 9
(@ 172X Y/ 1= 7,7 2 9
U UL - oo e 9
Building and running ... 10
Sample application for the COM module ... 11
OV IVIBW - - et e 11
L UGCEUL ® - oot e 12
Building and running ... 12
Sample application for the DM module......... ... 13
(@ L 7=Y Y 17,7 2P 13
MU UL - oot 14
Building and running ..o 14
Sample application for Alintegration 16
(@ L =Y Y177 2 PP 16
U C UL - v oot 16
Building and running ... 16
B oo 17
Annex 1 - Mathworks Simulink modelling ... 18
Modeiling TNE NI A CE - oo 18
Modelling the CONNECION ..o 19
Using the generated ARXML files ... 20
Annex 2 - JSON deployment manifests without ARXML ... 21
Annex 3 - Using the generators client 22
ANNeX 4 - DeployiNg tO targetS oo 23
Prepare the BArGELS o 23
Install the corbos AdaptiveCore runtime ... 23
Deploy the application to the L 1~ S R 24
Annex 5 - Using sil-kit for an overlay network 28
Prerequisites ... 29
Creating the tap interfaces on the EC2 instances ... 29
Setting up the overlay NetwOrk 29
Setting up Wireshark to monitor the overlay network ... 31
Running the sample COM application .- ...o oo 33

Page 2

Legal notice

Legal notice

Elektrobit Automotive GmbH
Am Wolfsmantel 46

D-91058 Erlangen
GERMANY

Phone: +49 9131 7701-0
Fax: +49 9131 7701-6333
http://www.elektrobit.com

Internal Information

ALL RIGHTS RESERVED. No part of this publication may be copied in any form, by photocopy, microfilm,
retrieval system, or by any other means now known or hereafter invented without the prior written
permission of Elektrobit Automotive GmbH.

Copyright 2024, Elektrobit Automotive GmbH

Page 3

http://www.elektrobit.com/

Typographic and style conventions

Typographic and style conventions

The signal word WARNING indicates information that is vital for the success of the configuration.

Source and kind of the problem
WARNING What can happen to the software?

A What are the consequences of the problem?

How does the user avoid the problem?

The signal word NOTE indicates important information on a subject.

NOTE

Important information
@ Gives important information on a subject

The signal word TIP provides helpful hints, tips and shortcuts.
Q Helpful hints
TIP Gives helpful hints

Throughout the documentation you find words and phrases that are displayed in bold, italic, or

monospaced font.
To find out what these conventions mean, see the following table.

All default text is written in Arial Regular font.

Page 4

Typographic and style conventions

Font Description Example
Open Sans Emphasizes new or important The basic building blocks of a
italics terms configuration are module configurations.

Open Sans bold

Monospaced
font (Source
Code Pro)

Square brackets

[]

Curly brackets {}

Ellipsis ...

A vertical bar |

GUI elements and keyboard keys

User input, code, and file
directories

Denotes optional parameters; for
command syntax with optional
parameters

Denotes mandatory parameters;
for command syntax with
mandatory parameters

Indicates further parameters; for
command syntax with multiple
parameters

Indicates all available
parameters; for command syntax
in which you select one of the
available parameters

1.In the Project drop-down list box, select
Project_A.

2. Press the Enter key.

The module calls the
BswM_Dcm_RequestSessionMode ()

function.

For the
Project_Test.

enter

project

name,

insertBefore [<opt>]

insertBefore {<file>}

insertBefore [<opt>..]

allowinvalidmarkup {on|off}

Page 5

About

About

The SDK for EB corbos AdaptiveCore represents a cloud-based solution aimed to simplify the
development process of Adaptive Autosar applications.

An overview of how the development process looks is depicted below:

1. application code and

ARXML configuration =17 =N 4 build and
SDKAMI | _’ run application

OEM/Tier1 developer , \
/
, \
/ \
1 2. submit ARXML 3. fetch generated C/C++ source code
\ configuration ! and runtime configuration
\
N\ /

A /

g]
SDK generators service

The SDK for EB corbos AdaptiveCore is delivered with three sample applications that use the
ara::com, ara::dm and ara::dlt functional clusters.

WARNING
Q The sample source code should not be used for production purposes.

CAUTION . o o , ,
: The first build is slower because it involves generating code and runtime

configurations. Subsequent builds of the sample applications are faster.

Page 6

Prerequisites

Prerequisites

e arunning EC2 machine based on the SDK for EB corbos AdaptiveCore AMI (available in AWS marketplace in arm64 flavor)

* auser account on the Elektrobit Cloud portal

e VSCode locally installed on your PC configured with the Remote Development extension

Page 7

https://elektrobit.cloud/

Setting up the environment

Setting up the environment

Q If you already know how to configure the Remote Development extension in VSCode
TIP you may skip this section.

Configure the environment connection

On your local PC create a config file under your SSH home(e.g. C:\users\<your_user>\.ssh for
Windows, or /home/<your_user>/.ssh)and put the following contents:

Host <your_machine_name>
HostName <ip address of the EC2 machine>
User ubuntu
IdentityFile <path to your ssh key for the EC2 machine>

Start VSCode and connect to the remote machine by pressing Ctr1+Shift+P and writing Remote-
SSH:Connect to Host. You should be able to select <your_machine_name> from the configuration file

above.

Configuring the remote environment

Once you are connected go to File and select Open Workspace from File and then navigate to the
/home/ubuntu/samples folder and select the .samples.code-workspace file.

At this point you should install the following VSCode extensions in the remote environment:

e (CMake and CMake Tools

o C/C++

For a better UX experience (in VScode) configure CMake Tools to use "Unix Makefiles"
TIP Q as default generator. You can do this under File/Preferences/Settings and

search for cmake.generator.

Configuring the APl key for the generators

Each sample app contains a config.json file in its root directory:

{
"folder" : "/home/ubuntu/samples/hello-com/model",
"plugets": "AraDltModelGenerator,AraComBindingGenerator,AraComManifestGenerator",
"pname" : "hello-com",
"token" : "<your_token_here>",
"url": "https://adg-generator-prod.elektrobit.cloud/generator",
"asr'": "20-11"
}

Please register and create a user account on Elektrobit Cloud. The required API token can be generated

in your account settings and can be used in the config.json file.

Page 8

https://elektrobit.cloud/

Sample application for the DLT module

Sample application for the DLT module

This application demonstrates the usage of the Log and Trace functional cluster of corbos Adaptive
Autosar platform. The DLT module implements the Adaptive Autosar ara: :log interface.

Overview

The application uses the DLT module client libraries : libaralog and Tlibaradltproxy to
communicate with a DLT daemon (running in the corbos Adaptive Autosar runtime) and logs several
messages to a Genivi DLT compatible backend.

WARNING The below description is just a short and incomplete summary. For a rough
overview please read the Explanation of Adaptive Autosar Platform (doc no 706)
and Specification of Log and Trace (doc no 853) of the Adaptive Autosar standard.

The model part configures the default Log and Trace setup of the application which requires at

minimum:

® an Executable element

® a Process Design element that references the executable

e acorresponding Process element linked to the executable

® a Machine element with a corresponding MachineDesign element

® a LogAndTracelnstantiation with atleast one DltLogChannel, the latter containing the actual logging configuration like

default log level, contextld, log trace modes and further descriptions

® a DltLogChannelToProcessMapping that links the Process with the DltLogChannel

Structure

There are three important parts:

e The src folder contains the actual source code of the application
e The model folder contains the ARXML configuration of the DLT libraries used by the application

* The CMakeLists.txt defines the required C++ libraries of corbos Adaptive Autosar platform and a custom function

NOTE The custom task executes the generator client tool against the model directory and
generates the actual configuration file used by the DLT libraries linked in the
@ application.
CAUTION
Since the configuration generation is a slower process, the custom function is
A executed when the build directory is clean or when the ARXML model file changes.

Page 9

Building and running

Building and running
Generate the build & libraries configuration using CMake (preferably through an IDE like VScode) and

then compile the sources.

e Start the corbos Adaptive Autosar platform runtime using sudo adg-prepare && sudo adg-start
e |nthe hello-dlt directory execute sudo adg_sandbox -e -c adg_hello-dlt_process_am.json

e To change the input argument of the application update the adg_hello-dlt_process_am.json file at line 18 in the args

section

e <Optional> Start dlt-viewer (requires a GUI) and filter the logs based on application id HLD

Page 10

Sample application for the COM module

Sample application for the COM module

This application demonstrates the usage of the Communication Management functional cluster of
corbos Adaptive Autosar platform. The COM module implements the Adaptive Autosar ara::com
interface.

Overview

The application uses the COM module client libraries (in addition to the DLT ones) : libara_com and
libara_core to communicate with a COM daemon (running in the corbos Platform runtime).

It contains two executables : a service that registers itself with a method to the COM daemon and a
client that requests this method from the COM daemon and then calls it.

WARNING The below description is just a short and incomplete summary. For a rough
overview please read the Explanation of Adaptive Autosar Platform (doc no 706)
A and Specification of Communication Management (doc no 717) of the Adaptive

Autosar standard.

The model part contains the default configuration for Log and Trace (see hello-dIt example) for the two
executables, an interface definition between the two executables and its corresponding optional
SomelP configuration.

The interface definition requires at minimum:

® a ServiceInterface element which represents the C++ class name of the interface
e oneormore Symbol Props element(s) that represent the namespace under which the sources are generated

e one or more corresponding ClientServerOperation elements along with ArgumentDataPrototype that describe the
actual method(s) offered by the interface

e oneor more DataType (s) that are referenced in the method signature

The above interface defines just a simple synchronous RPC scenario. ara::com offers
TIP Q the possibility to configure much more ways to communicate between two

applications.

The interface SomelP configuration requires at minimum for each process (client and server):

® a SomeIpSdServerServiceInstanceConfig or SomeIpSdClientServiceInstanceConfig element

° A ProvidedSomeIpServicelnstance or RequiredSomeIpServicelnstance named according to the

InstanceIdentifier used from the client and service C++ code
e acorresponding EthernetCluster that contains the network settings of the hosts of the client or the service
e acorresponding EthernetCommunicationConnector that links the Machine to the network settings
® a SomeipServiceDiscovery that specifies the service discovery settings and links to the network settings

e a corresponding SomeipServiceInstanceToMachineMapping that maps the network settings against the

ProvidedSomeIpServiceInstance Or RequiredSomeIpServiceIlnstance

Page 11

Structure

Structure

There are five important parts:

e The client folder contains the actual source code of the client executable
e The service folder contains the actual source code of the service executable

e The model folder contains the ARXML configuration of the DLT libraries used by the two executables , the ARXML interface
definition between the service and the client and the ARXML SomelP configuration

* The run_generators.sh shell script that handles all the generator interaction

e The CMakelLists.txt defines the required C++ libraries of corbos AdaptiveCore and a custom task for DLT and COM.

The custom task for DLT & COM executes a shell script against the model directory
NOTE and generates a client implementation(proxy) and a stub(skeleton) to be
implemented by the service for the defined interface. Additionally it also creates
@ actual configuration files used by the DLT libraries linked in the each executable (two
configurations - one for each executable is generated).

CAUTION . . . o .
c Since the configuration generation is a lengthy process, the custom task is executed

when the build directory is clean or when any of the ARXML model files change.

Building and running

Generate the build & libraries configuration using CMake (preferably through an IDE like VScode) and
then compile the sources.

IPC execution

IPC execution starts the two processes on the same machine and allows communication. It works out-
of-the -box without any specific corbos Adaptive Autosar Platform settings.

e Start the Corbos Platform runtime using sudo adg-prepare && adg-start

* |nthe hello-com directory execute sudo adg_sandbox -e -c adg_com_svc_process_am.json

e |nthe hello-com directory execute sudo adg_sandbox -e -c adg_com_client_process_am.json
® Press enter inthe standard out of the client to trigger the function call

e Startthe dlt-viewer and filter the logs based on application id HLCC and HLCS

SomelP execution

For details on how to set up the SomelP communication please refer to the Annex 5 - Using sil-kit for an

overlay network section.

Page 12

Sample application for the DM module

Sample application for the DM module

This application demonstrates the usage of the Diagnostic Management functional cluster of corbos
Adaptive Autosar platform. The DM module implements the Adaptive Autosar ara: :diag interface.

Overview

The application uses the DM module client library (in addition to the DLT ones) : libdiagapi to offer a
Data Identifier using the ReadDataByldentifier service through the DM daemon (running in the corbos
Adaptive Autosar runtime) and logs several messages to a Genivi DLT compatible backend.

The application registers itself to the DM daemon as the provider of the value of the Data Identifier
1000. The value returned is constant 10.

The below description is just a short and incomplete summary. For a rough
WARNING overview please read the Explanation of Adaptive Autosar Platform (doc no 706)
A and Specification of Diagnostics (doc no 723) of the Adaptive Autosar standard.
Additionally you might find useful to take a look at the following standards: UDS

(ISO 14229-1:2013) and DolP (ISO 13400-2:2012).

The model part contains the default configuration for Log and Trace (see hello-dIt example) for the
executable, an interface definition for the Data Identifier 1000 and the corresponding Diagnostic
Management(including DolP) configuration.

The interface definition requires at minimum:

® a DiagnosticDataIndentifierInterface element which represents the C++ class name of the interface

® a DiagnosticDataIdentifier element which defines the structure of the offered Data Identifier

® a DiagnosticServiceDataldentifierPortMapping which connects the service interface to the actual process
e oneormore Symbol Props element(s) that represent the namespace under which the sources are generated

e one corresponding Read | ClientServerOperation element along with "ArgumentDataPrototype’s that describe the
actual method offered by the interface

e one DataType thatis referenced in the method signature and depicts the type returned by the Data Identifier

e one AdaptiveApplicationSwComponentType that contains one PPortPrototype, one PortGroup and one

AdaptiveSwcInternalBehavior

e the PPortPrototype points to the DiagnosticDataldentifierInterface; the PortGroup points to the
DiagnosticDataIdentifier and the AdaptiveSwcInternalBehavior pointsto the PortGroup

CAUTION o
f The above interface defines a simple ReadDataByldentifier scenario. This is similar

to the COM definition example.

Page 13

Structure

NOTE The deployment configuration for the application along with the DolP configuration
@ would require an extensive description that does not fit the purpose of this small
Readme.

The following points describe the truly important aspects of the DM and Dolp configuration:

e the DiagnosticServiceTable depicts which Data Identifiers are offered and by what application

e the SofwareCluster depicts the diagnostic address of the DM server (this is needed by the client)

e the EthernetCluster describes the DolP server unicast network binding properties and the type of diagnostic entity

e the PlatformModuleEthernetEndpointConfiguration describes the DolP server multicast network binding properties

e the DiagnosticConnection and DoIpTpConfig describe the diagnostic address routing logic (between the clients and the
software cluster)

e the custom DiagnosticManagement module instantiation depicts in general the non-application specific configuration of
the DolP server

Structure

There are four important parts:

e The src folder contains the actual source code of the application

e The model folder contains the ARXML configuration necessary to generate the stubs for the DM interface, the DM
configuration and the DLT logging configuration

® The run_generators.sh script that handles all the generator interaction

* The CMakelLists.txt defines the required C++ libraries of corbos AdaptiveCore and a custom task for DLT and DM

NOTE The custom task for DLT & DM executes a shell script against the model directory and

generates a stub(skeleton) of the DID to be implemented by the diagnostic
@ application. Additionally it also creates actual configuration files used by the DLT and

DM libraries linked in the executable.

CAUTION . . . o .
f Since the configuration generation is a lengthy process, the custom task is executed

when the build directory is clean or when any of the ARXML model files change.

Building and running

Generate the build & libraries configuration using CMake (preferably through an IDE like VScode) and
then compile the sources.

e Copythe build/ara_DM_mm.json fileto /etc/adaptive/ara_DM/
e Start the corbos Adaptive Autosar Platform runtime using sudo adg-prepare && sudo adg-start
® Inthe hello-dm directory execute sudo adg_sandbox -e -c adg_dm_process_am. (Press CTRL + C to exit)

e Startthe dlt-viewer and filter the logs based on application id HLDM

Page 14

Building and running

Open Wireshark and sniff the Dolp traffic on localhost (using the ssh port-forwarding facilities)

e Execute the test_doip.sh script and see the exchanged messages

Page 15

Sample application for Al integration

Sample application for Al integration

The application demonstrates Al integration with functional clusters of corbos Adaptive Autosar
platform.

Overview

The application uses the ONNXRuntime library to run inference on a given neural network model and
logs the post-processed outputs as messages to a Genivi DLT compatible backend. The neural network
model is a HMI predictor, its scope being predicting whether the A/C or the heating shall be turned on
inside the car cabin based on data from sensors describing the cabin temperature, the outside
temperature and the outside humidity. The architecture of this feedforward neural network consists in
a shared hidden layer followed by two parallel softmax output heads, solving a multi-head classification
problem.

The flow of the application is as follows:

e Sensor data (cabin temperature, outside temperature, outside humidity) is generated by applying sinusoidal functions in

order for the values to simulate a 24 hour cycle
e Values are then split into time sequences which are fed to the neural network

e The outputs are confidence scores which are compared to thresholds for both cold and hot condiditons. If the value for one
output is bigger than its corresponding threshold, then the respective command is suggested (either A/C or heating on)

Structure

There are four important parts:

e The src folder contains the actual source code of the application
e The model folder contains the ARXML configuration of the DLT libraries used by the application

° The CMakelists.txt defines the required C++ libraries of corbos Adaptive Autosar platform as well as the ONNXRuntime
library required for inference and a custom function

* The onnx-model folder contains the neural network model serialized in onnx format; it can be placed at a path chosen
without restrictions by the user, but mentioned path shall be given as a command line argument when running the
application

Building and running

Generate the build & libraries configuration using CMake (preferably through an IDE like VScode) and
then compile the sources.

e Start the corbos Adaptive Autosar platform runtime using sudo adg-prepare && sudo adg-start
® Inthe hello-ai directory execute sudo adg_sandbox -e -c adg_hello-ai_process_am.json

e To change the input argument of the application update the adg_hello-ai_process_am.json file at line 18 in the args
section

e <Optional> Start dlt-viewer (requires a GUI) and filter the logs based on application id HLD

Page 16

FAQ

FAQ

How is the support for different AUTOSAR versions aligned?

Elektrobit offers various versions of this AMI covering different releases of the corbos AdaptiveCore.
Currently the supported Autosar versions are 19-03 and 20-11.

Can | debug the sample applications ?

Yes. You need to install the C/C++ extension for VSCode in the remote environment.

How do | connect with the DLT viewer?

You will need to forward port 3490 from the remote environment to your local machine either using
a tool like Putty or directly from VSCode.

How can | sniff traffic with Wireshark?

You can use SSH remote capture extension of Wireshark to capture traffic in the remote
environment. (see Setting up Wireshark to monitor the overlay network for example)

If | want to change the model files, what options do | have?

The current workflow assumes you will provide your own model files corresponding to your
application needs. These can be exported from third party tools (see Annex 1 - Mathworks Simulink
modelling for example) or from Elektrobit corbos Studio. Furthermore, some configurations can be
created or edited directly in Visual Studio Code (see Annex 2 - JSON deployment manifests without
ARXML).

How can | get my source-controlled (e.g. Git) applications into the remote environment?

Depending on your AWS account setup you can allow the EC2 instance to access various source
control systems. The EC2 comes with git pre-installed so you can simply clone your repos inside.

What generators are supported?

Currently this environment allows the integration with ara::dm, ara::com, ara::em, ara::pm,
ara::iam, ara::ucm and ara::dlt modules and only supports their corresponding generators.

How do | start a project from scratch?

The AMI provides some quickstart templates that can be used as a basis for new projects. The choice
of build environment technology (make, Cmake, conan etc.) is entirely up to the developer.

Page 17

Annex 1 - Mathworks Simulink modelling

Annex 1 - Mathworks Simulink modelling

This annex depicts the modelling process of the sample application for the COM module in Mathworks
Simulink. It is by no means an exhaustive depiction and just covers the essentials.

The HelloAdgService and the HelloAdgClient components were modeled in Mathworks Simulink
as block Models.

The model block references the specified model. It displays input and output ports that correspond to
the top-level input and output ports of the referenced model.

Modelling the interface

The GetSquareRoot() method provided by the HelloAdgService can be modeled as a Mathworks
Simulink Function block.

This is a subsystem block pre-configured as a starting point for graphically defining a function with
Mathworks Simulink. It provides a text interface to function callers. A Function block can be called from
a Function Caller block.

.r"?".

Result = GetSquareRoot(Number)

hello_com_service
The Function block HelloAdgInterface allows the Mathworks Simulink function GetSquareRoot() in

the referenced model HelloAdgService to be called by a Function Caller in another referenced
model.

I.) HelloAdginterface . GetSquareRoot

?

Result = GetSquareRoot{Number)

hello_com_service

Page 18

Modelling the connection

The Function Element block, when placed at the root level of a model referenced by a Model block,

creates an exporting function port in the Model block.

4 HelloAdgService N
L
4 HelloAdgClient
v
1 HelloAdginterface HelloAdglnterface
AN A
Server i'GetSquamRoot -
Mumber)
N
Client

Modelling the connection

The Function Element Call block allows a Function Caller block in a referenced model to call a
Mathworks Simulink function in another referenced model i.e. HelloAdgClient. The name of the
Function Element Call block must be same as the Function Element block in HelloAdgService.

GetSquareRoot

v

GatSquaraRool()

-C- B Mumber

Result

D

hello_com_client

HelloAdglnterface . GetSquareRoot @)

When the exporting function port is connected to an invoking function port of another Model block i.e.

HelloAdgService, a function caller in HelloAdgClient can issue GetSquareRoot() and receive
return values namely Result® through the respective function ports of the Model blocks

HelloAdgClient.

Page 19

Using the generated ARXML files

f()

GetSquareRoot
caller
1) P Number HelloAdginterface. GetSquareRoot() Resuitw
Number Result

Using the generated ARXML files

The code-generation facilities of Mathworks Simulink will export multiple ARXML
files along with various pieces of source code. For the purpose of this sample
IMPORTANT 8 P pHrp P

application only the generated HelloAdgService_interface.arxml,
HelloAdgService_datatype.arxml are used.

Once the ARXML files have been exported through the Mathworks Simulink Coder extension SDK
generators service can be used:

e copy the two files (HelloAdgService_interface.arxml, HelloAdgService_datatype.arxml) into a model folder under
a preferred path e.g. /home/ubuntu/samples/com-simulink

e copy one of the config.json files from the sample applications next to the model folder and adjust it:

{
"folder" : "/home/ubuntu/samples/com-simulink/model",
"plugets": "AraComBindingGenerator",
"pname" : "com-simulink",
"token" : "<your_token_here>",
"url": "https://adg-generator-prod.elektrobit.cloud",
"downloadPath" : "/home/ubuntu/samples/com-simulink",
llasrll: "20_11"

}

* execute in the /home/ubuntu/samples/com-simulink folder api_studio_client_cli-Tlinux -c

/home/ubuntu/samples/com-simulink/config.json

e extract the contents of the archive to obtain the source stubs for the ara::com C++ language bindings (e.g. under src/
and dinc/)

e these source files can then be used in your own build environment and your own custom application

Currently Mathworks Simulink ARXML generation does not allow complete
WARNING generation of runtime configurations (for example SOMEIP deployment manifests).
A For prototyping purposes you can re-use the ones generated in the
samples/hello-com application and adapt the human readable JSON files to your

needs.

Page 20

Annex 2 - JSON deployment manifests without ARXML

Annex 2 - J]SON deployment manifests without ARXML

This annex explains the process of creating/updating your JSON deployment manifests for DLT and DM
bypassing ARXML configuration. In some cases this is useful for debugging and testing various
configuration options for your application faster during integration.

NOTE
@ ARXML is still needed for language binding purposes. E.g. in case of DM and COM you

still need to model your interface and run through the generators.

The schemas directory contains two JSON schemas:

e dlt-schema.json is used to validate the JSON deployment manifest for the DLT configuration of your application

e dm-schema.json is used to validate the JSON deployment manifest for DM configuration of your application

The .samples.code-workspace file already references these two schemas for validating the
corresponding JSON manifest files. You can then edit or create these JSON manifest files (with the
corresponding naming conventions) directly from the Visual Studio Code.

Page 21

Annex 3 - Using the generators client

Annex 3 - Using the generators client

This annex explains how to directly use the code and configuration generator client. This allows the
developer to use any build system as per their preference.

The api_client_cli-linux is bundled in the AMI and offers two ways of interaction:

e passing multiple cli arguments as input (pass --help flag to see the options)

e passing a configuration file as input (pass the -c /absolute/path/to/config option)

WARNING o ,
: Due to some limitations in the client, currently only absolute paths are supported

when passing the configuration file.

The sample applications in the AMI use the second approach. For example:

ubuntu@:~$ api_client_cli-linux -c /home/ubuntu/samples/hello-com/config.json

This will generate the code and configuration files for the hello-com sample application.In this case
you'll find the generated files in an archive named hello-com_<some_timestamp>.zip in the same

folder where the client was executed.

The configuration file is structured as follows:

{
"folder" : "/home/ubuntu/samples/hello-com/model", 0
"plugets": "AraDltModelGenerator,AraComBindingGenerator,

AraComManifestGenerator", e

"pname" : "hello-com", e
"token" : "<your_token_here>", 0
"url": "https://adg-generator-prod.elektrobit.cloud", e
"downloadPath" : "/home/ubuntu/samples/hello-com", e
"asr": "20-11" @

}

1. the path to the model folder that contains the ARXML files
2. the generator(s) to use

3. name of your project

4. the authentication token

5. the url of code and configuration generator service

6. the path where the generated files will be downloaded

7. the Autosar version used

Page 22

Annex 4 - Deploying to targets

Annex 4 - Deploying to targets

This annex explains how to deploy an ADG SDK application to one of these three targets:

e virtual ECU as AWS EC2 arm64 instance - called Graviton
e virtual ECU as Arm Virtual Hardware (Raspberry Pi 4) - called AVH in the following

e physical ECU as Raspberry Pi 4 - called RasPi in the following

Prepare the targets

Graviton - Launch an EC2 arm64 instance with Ubuntu Server 22.04 (by default running applications on
the SDK instance is equivalent to this)

AVH - First register to Arm Virtual Hardware and then create a Raspberry Pi 4 device with Ubuntu Server
on RPi (22.04.1) as firmware.

RasPi - Install Ubuntu Server 22.04 as described here: Install Ubuntu on a Raspberry Pi

Install the corbos AdaptiveCore runtime

First, connect via SSH to the target(s). Next, install the corbos AdaptiveCore runtime environment from
an installer package with following commands in your target shell:

ubuntu@:~$ cd /tmp

ubuntu@:~$ curl -L -H "Authorization: Bearer <your_token_here>" "https://adg-generator-
prod.elektrobit.cloud/runtime?adgv=2.18&platform=ubuntu&target=raspi" -o adg-2.18-
runtime.tar.gz

ubuntu@:~$ tar xzvf adg-2.18-runtime.tar.gz

ubuntu@:~$ cd adg

ubuntu@:~$ sudo chmod +x ./install-adg.sh

ubuntu@:~$ sudo ./install-adg.sh

Replace <your_token_here> with your authentication token as described in

IMPORTANT Configuring the API key for the generators.

At the end you should be able start the runtime with the following commands:

ubuntu@:~$ sudo adg-prepare
ubuntu@:~$ sudo adg-start

You should see the following output:

Starting EB Corbos AdaptiveCore...
Starting adg_emd in detached mode
Checking adg_emd 1is running..

Wait 1...

adg_emd PID: 41309

Page 23

https://www.arm.com/products/development-tools/simulation/virtual-hardware
https://ubuntu.com/download/raspberry-pi

Deploy the application to the target

Deploy the application to the target

You can now copy any of the sample applications to the target.

First, create a folder structure to store the application binary on the target. Next, copy your application
binary to the target.

Option 1: Copy via command line

Use the scp command to copy your application binary via the command line. For example for hello-
com, use this from a command line on your target:

ubuntu@:~$ ssh root@<target_ip> "mkdir -p /root/hello-com"

ubuntu@:~$ scp -r /home/ubuntu/samples/hello-com/build/hello_com_client
root@<target_ip>:/root/hello-com/

ubuntu@:~$ scp -r /home/ubuntu/samples/hello-com/build/hello_com_server
root@<target_ip>:/root/hello-com/

ubuntu@:~$ scp /home/ubuntu/samples/hello-com/build/libsvcifc.so root@<target_ip>:/usr/lib/

Q For applications that come with a shared library make sure to copy this to /usr/lib
TIP (e.g. hello-dm and hello-com).

The hello-com and hello-dm sample applications contain also configuration files
needed by some daemons part of the corbos AdaptiveCore platform. Make sure to
@ copy them on the target in their required locations. For details see the Building and
Running section of the respective sample application.

NOTE

Option 2: Copy via Visual Studio Code extension

As an alternative to the command line, you can also use a custom Visual Studio Code extension for
copying the application binary to the target.

Install extension

You first need to install the extension on your AWS instance. Log in to your AWS instance via SSH in
Visual Studio Code. Once you are connected, open a Visual Studio code terminal. You can then install
the extension with this command:

code --install-extension /home/ubuntu/elektrobit/extensions/deploy-buttons-0.1.0.vsix

Page 24

Deploy the application to the target

Open extension
In Visual Studio Code, open the "Deploy Buttons" extension with the cloud upload icon in the sidebar:

File Edit Selection View Go Run Terminal Help

Extension D Deploy Buttons

Use extension
The extension allows you to dynamically add and configure targets. You can then deploy to one of the
targets with the respective deploy button. You can also export and import the entire configuration.

Here is an overview over the basic functions:

Export configuration

Import configuration

Add new target s Add Target

> Graviton

<] Graviton

Expand / collapse
target configuration

> Raspberry Pi
Deploy to target ® Raspberry Pi

Page 25

Deploy the application to the target

The deploy buttons copy a file to a network target by running an scp command in the background.
You can configure the parameters of the scp command separately for each target. Use the chevron
icon to expand and collapse the target configuration. The expanded view also includes buttons for
copying the scp command to the clipboard and for deleting a target. Here is an example of an
expanded target configuration:

Add Target

@ - Gaviton Delete target
Name
Graviton
_ Copy SCP command
Binary source path A
to clipboard

/home/ubuntu/samples/hello-com/build/hello_com_client/hello-adg-

Username

ubuntu

Expanded target

configuration ST

/home/ubuntu/.ssh/key.pem
IP address

377.17.71

Binary destination folder

/home/ubuntu/hello-com/hello_com_client

B Use jump host

Graviton

> Raspberry Pi
@D Raspberry Pi

The optional configuration of a jump host appears only when you enable the option Use jump host.
For AVH, you need to enable the option Use jump host and configure the username and hostname of

the jump host according to the details in the Connect tab of your AVH device.

¥ Use jump host
Jump host username

ae3d2ee2-9b40-402c-aabd-45c1c7f89ce

Jump host
co nﬁgU ration Jump host hostname

proxy.app.avh.corellium.com

Page 26

Deploy the application to the target

The extension periodically checks if the targets are online. When a target is offline, its deploy button
gets disabled. Targets that use a jump host are being treated as always online.

DEPLOY BUTTONS

+ Add Target

. > Graviton
Target online
@D Graviton

Deploy button enabled

. > Raspberry Pi
Target offline e
S Raspberry Pi

Deploy button disabled

Page 27

Annex 5 - Using sil-kit for an overlay network

Annex 5 - Using sil-kit for an overlay network

This annex explains how to set-up an overlay network using sil-kit. This tool comes pre-bundled in the
SDK for EB corbos AdaptiveCore AMI. The overlay network is a virtual network that runs on top of the

physical network.

Such a network is useful for testing automotive applications distributed across multiple ECUs.
Additionally, developers can use locally proprietary test tools to interact with virtual ECUs in this overlay

network (e.g. inject traffic, connect local emulators or even real targets).

The following example setup demonstrates how to create a virtual network with two ECUs, ECU1 and
ECU2, each running on a separate EC2 instance based on the SDK for corbos AdaptiveCore AMI. The
sample application for COM module is used to demonstrate SOME/IP communication between the two

ECUs using the overlay network.

EC2 Node 1

hello-com-client 5

A
: I
corbos AdaptiveCore
bind
«overlayO» SOME/IP commu

sil-kit-adapter-tap

«ensb»
aws-interface

silkit-registry

nicati

pon

EC2 Node 2

hello-com-service
A

corbos AdaptiveCore k

bind

«overlay0O»
sil-kit-adapter-tap

I
|

,]
register |

|

«ensbsy»

aws-interface

Page 28

https://github.com/vectorgrp/sil-kit/tree/main

Prerequisites

Prerequisites

e two running EC2 instances based on the SDK for EB corbos AdaptiveCore AMI (available in AWS marketplace in armé4
flavor)

e the ip addresses of the two EC2 instances are known

e the security group of the two EC2 instances allows all traffic between them (this is required for sil-kit).

Creating the tap interfaces on the EC2 instances

On each of the two instances execute the following commands to create the tap interfaces:

ubuntu@:~$ sudo ip tuntap add mode tap overlay®
ubuntu@:~$ sudo ip link set overlay®@ up

Next, for the first instance assign the corresponding ip where hello_com_client will run :
ubuntu@:~$ sudo ip addr add 172.18.0.2 dev overlay®
For the second instance assign the corresponding ip where hello_com_server will run:

ubuntu@:~$ sudo ip addr add 172.18.0.3 dev overlay®

These will be the actual interfaces the virtual ECUs will use to communicate with each other.

Setting up the overlay network

One of the instances will act as the registry where other instances can register themselves. The other
instances will act as taps that can communicate with each other through the registry.

Since this setup only uses two EC2 machines, one instance will run both the registry and the tap.

Before starting the sil-kit-registry, ensure that the tap interface is up and running on
TIP Q both instances. Additionally make sure to clean up any previous instances of the sil-

kit-registry and sil-kit-adapter-tap.

On the first instance, run the following commands to start the sil-kit registry:

ubuntu@:~$ sudo killall -9 sil-kit-registry || true
ubuntu@:~$ sudo sil-kit-registry --listen-uri silkit://0.0.0.0:8501 -s > /tmp/sil-kit-
registry.log 2>&1 &

Next, setup a dummy fifo on each instance to keep the tap running:

Page 29

Setting up the overlay network

ubuntu@:~$ sudo killall -9 sil-kit-adapter-tap || true
ubuntu@:~$ sudo rm -rf /tmp/silkit_dummy_fifo®
ubuntu@: ~$ sudo mkfifo /tmp/silkit_dummy_fifoo

On the first instance, run the following command to start the sil-kit-adapter-tap:

ubuntu@:~$ nohup sh -c cat /tmp/silkit_dummy_fifo® | sudo sil-kit-adapter-tap --log Info --
registry-uri silkit://<ip_address_of_the_registry_instance>:8501 --name ECUl --network
tap_bridge --tap-name overlay® > /tmp/SilKitAdapterTap.log 2>&1 &

On the second instance, run the following command to start the sil-kit-adapter-tap:

ubuntu@:~$ nohup sh -c cat /tmp/silkit_dummy_fifo® | sudo sil-kit-adapter-tap --log Info --
registry-uri silkit://<ip_address_of_the_registry_instance>:8501 --name ECU2 --network
tap_bridge --tap-name overlay® > /tmp/SilKitAdapterTap.log 2>&1 &

NOTE
Replace <ip_address_of_the_registry_instance> with the actual ip address of
@ the first instance(where the registry runs).

Q You can check the logs of the sil-kit-registry and sil-kit-adapter-tap by looking at the
TIP respective log files in /tmp.

Next, update the startup script of the COM daemon to use the tap interface on both instances. Modify
the startup script at /etc/adaptive/adg-platform/adg_com_start-startup.sh :

#!/bin/bash
interface="overlay@" <-- change this to the tap interface name

Page 30

Setting up Wireshark to monitor the overlay network

Setting up Wireshark to monitor the overlay network

To monitor the overlay network, install Wireshark on your local machine and configure the ssh capture
interface to capture packets from the tap interface on the first instance.

‘ Wireshark - Capture Options X

Input Output Options

Interface Traffic Link-layer Header Promisct Snaplen (B) Buffer (MB) Monitor Capture |
> Local Area Connection* 2 —_ Ethernet a default 2 —
> Local Area Connection* 1 _ Ethernet a default 2 —
> Wi-Fi _ Ethernet a default 2 —
> Ethernet 5 _ Ethernet (] default 2 —
> Ethernet 4 _ Ethernet a default 2 —
> Ethernet 7 _ Ethernet [] default 2 —
> Adapter for loopback traffic capture — BSD loopback a default 2 —
> Ethernet 2 _ Ethernet [] default 2 —
> Ethernet — Ethernet] default 2 —
@ Cisco remote capture —_ Remote capture dependent DLT — — — —
@ Event Tracing for Windows (ETW) reader __ DLT_ETW — — — —
@_SSH remote capture _ Remote capture dependent DLT — = = =
i-Fi remote capture _ Remote capture dependent DLT — — — —
.
8 Enable pmm\'sﬁus mode on all interfaces Manage Interfaces...
Capture filter for selected interfaces: l ‘ Enter a capture filter ... 'J Compile BPFs

Start Close Help

First configure the instance on which to sniff the packets:

‘ Wireshark - Interface Options: SSH remote capture X

Server Authentication Capture Debug

Remote SSH server address ec? <

Remote SSH server port 22 <

@ save parameter(s) on capture start

Restore Defaults Save Close Help

Page 31

Setting up Wireshark to monitor the overlay network

Next configure the authentication to the instance:

‘ Wireshark - Interface Options: S5H remote capture

Server Authentication Capture Debug

Remote 55H server username ubuntu (&)
Remote S5H server password (&
Path to SSH private key Clear
SSH key passphrase (v
ProxyCommand \ (@
O Support SHA-1 keys (deprecated) (v
B Save parameter(s) on capture start
Restore Defaults Save Close Help
Finally, configure the interface to sniff on and start the capture:
‘ Wireshark - Interface Options: SSH remote capture
Server Authentication Capture Debug
Remote interface overlayQ <
O dumpcap
Remote capture command selection (o] tcpdump <
() Other:
Remote capture command <
) none /
Gain capture privilege on the remote machine 0O sudo <
() doas
Privileged user name for sudo or doas <
O No promiscuous mode <
Remote capture filter not port 22 (&
Packets to capture 0 C
B Save parameter(s) on capture start
Restore Defaults Save Close Help

Running the sample COM application

Running the sample COM application

On the second instance, copy the application manifest and run the following commands to start the
COM server:

ubuntu@:~$ sudo mkdir /etc/adaptive/ara_Com/daemon_1

ubuntu@:~$ sudo cp /home/ubuntu/samples/hello-com/build/hello_com_service/hello-
com_CM_ServiceMachineIpV4_ServiceEthConnector_amd.json /etc/adaptive/ara_Com/daemon_1
ubuntu@:~$ sudo adg-prepare

ubuntu@:~$ sudo adg-start

ubuntu@:~$ sudo adg_sandbox -e -c adg_com_svc_process_am.json

On the first instance, copy the application manifest and run the following commands to start the COM
client:

ubuntu@:~$ sudo mkdir /etc/adaptive/ara_Com/daemon_1

ubuntu@:~$ sudo cp /home/ubuntu/samples/hello-com/build/hello_com_client/hello-
com_CM_ClientMachineIpV4_ClientEthConnector_amd.json /etc/adaptive/ara_Com/daemon_1
ubuntu@:~$ sudo adg-prepare

ubuntu@:~$ sudo adg-start

ubuntu@:~$ sudo adg_sandbox -e -c adg_com_client_process_am.json

Page 33

	Legal notice
	Typographic and style conventions
	About
	Prerequisites
	Setting up the environment
	Configure the environment connection
	Configuring the remote environment
	Configuring the API key for the generators

	Sample application for the DLT module
	Overview
	Structure
	Building and running

	Sample application for the COM module
	Overview
	Structure
	Building and running

	Sample application for the DM module
	Overview
	Structure
	Building and running

	Sample application for AI integration
	Overview
	Structure
	Building and running

	FAQ
	Annex 1 - Mathworks Simulink modelling
	Modelling the interface
	Modelling the connection
	Using the generated ARXML files

	Annex 2 - JSON deployment manifests without ARXML
	Annex 3 - Using the generators client
	Annex 4 - Deploying to targets
	Prepare the targets
	Install the corbos AdaptiveCore runtime
	Deploy the application to the target

	Annex 5 - Using sil-kit for an overlay network
	Prerequisites
	Creating the tap interfaces on the EC2 instances
	Setting up the overlay network
	Setting up Wireshark to monitor the overlay network
	Running the sample COM application

